Indice

IN	TRODUZIONE	1
P.A	ARTE PRIMA	
1	CONCETTI E RELAZIONI DI BASE DI UN MODELLO INPUT OUTPUT PER UNA SINGOLA REGIONE	. 13
	1.1 Il modello di Leontief e la tavola Input Output	. 13
	1.2 Il modello IO per una singola regione (SRIO)	. 20
	1.3 Esistenza ed unicità della soluzione del modello	. 25
	1.4 La chiusura del modello rispetto alla domanda finale	. 29
	1.5 La decomposizione in serie della matrice inversa di Leontief	. 30
	1.6 L'espressione del modello dei prezzi	. 31
	1.7 Dalle analisi in valore alle analisi in quantità	. 34
	1.8 Utilizzi trasportistici del modello SRIO	. 35
2	I MODELLI INPUT - OUTPUT DINAMICI	. 39
3	I MODELLI INPUT - OUTPUT MULTI-REGIONALI	. 43
	3.1 Il modello IO interregionale (IRIO)	. 43
	3.2 Il modello IO multiregionale (MRIO)	. 45
	3.3 Utilizzi trasportistici del modello MRIO	. 52
4	I MODELLI INPUT - OUTPUT A COEFFICIENTI ELASTICI	. 57
	4.1 I modelli IO a coefficienti elastici con utilità aleatoria (RUBMRIO)	. 57
	4.2 Un algoritmo per l'applicazione del modello RUBMRIO	. 62
	4.3 Estensioni del modello RUBMRIO	. 66

PARTE SECONDA

5		ODELLI INPUT OUTPUT: UNO STRUMENTO EFFICACE PER LA NIFICAZIONE REGIONALE?	71
		La dimensione spaziale	
		Le analisi di scenario e le funzioni previsionali	
		Uno strumento per la pianificazione dei sistemi e delle infrastrutture di trasporto	9
	5.4	I fattori di criticità: disomogeneità informativa e complessità strutturale	82
6		CROANALISI DELLA DOMANDA DI TRASPORTO MERCI LUNGO UN RRIDOIO INTERMODALE	89
	6.1	La definizione del modello aggregato	90
	6.2	Il caso studio: il Valico del Brennero	99
	6.3	I dati di base per l'applicazione al traffico merci al Brennero 1	.02
	6.4	La predicibilità della produzione totale e delle tonnellate trasportate anno su anno	
	6.5	La predicibilità della produzione totale e delle tonnellate trasportate sul medio-lungo periodo	
	6.6	La previsione della produzione totale e delle tonnellate trasportate s breve periodo	
	6.7	La previsione della produzione totale e delle tonnellate trasportate s medio-lungo periodo	
7		COMPOSIZIONE STRUTTURALE DELL'ANDAMENTO DEL TRAFFICO SI CORRIDOIO DI TRASPORTO MERCI1	
	7.1	La specificazione del modello SDA	.33
	7.2	L'applicazione del modello SDA al traffico merci sul passo del Brennero	.39
8	ESE	MPLIFICAZIONI NUMERICHE 1	49

8.1	Esempio di calcolo per il modello SRIO	149
8.2	Esempio di applicazione trasportistica del modello SRIO	155
8.3	Esempio di calcolo per un modello SRIO dinamico	159
8.5	Esempio di calcolo per il modello IRIO	162
8.6	Esempio di calcolo per il modello MRIO	167
8.8	Esempio di calcolo per il modello RUBMRIO	177
RIFE	RIMENTI BIBLIOGRAFICI	185